
Digital Object Identifier (DOI) 10.1140/epjc/s2005-02251-8
Eur. Phys. J. C 42, 17–24 (2005) THE EUROPEAN

PHYSICAL JOURNAL C

Relations between quark and lepton mixing angles and matrices

Nan Li1, Bo-Qiang Ma2,1,a

1 Department of Physics, Peking University, Beijing 100871, P.R. China
2 CCAST (World Laboratory), P.O. Box 8730, Beijing 100080, P.R. China

Received: 6 April 2005 /
Published online: 18 May 2005 – c© Springer-Verlag / Società Italiana di Fisica 2005

Abstract. We discuss the relations between the mixing angles and the mixing matrices of quarks and lep-
tons. With Raidal’s numerical relations, we parameterize the lepton mixing (PMNS) matrix with the pa-
rameters of the quark mixing (CKM) matrix, and calculate the products of VCKMUPMNS and UPMNSVCKM.
Also, under the conjectures VCKMUPMNS = Ubimax or UPMNSVCKM = Ubimax, we get the PMNS matrix
naturally, and test Raidal’s relations in these two different versions. The similarities and the differences
between the different versions are discussed in detail.

PACS. 14.60.Pq, 12.15.Ff

1 Introduction

The mixing of quarks and leptons is one of the funda-
mental problems in particle physics. But its origin is still
unknown yet, and the mixing is described phenomeno-
logically by the mixing matrices, i.e., the Cabibbo–
Kobayashi–Maskawa (CKM) [1] matrix for quark mixing
and the Pontecorvo–Maki–Nakagawa–Sakata (PMNS) [2]
matrix for lepton mixing. To understand the mixing prob-
lem, two aspects should be considered. One is the mix-
ing matrix, and the other is the mixing angle. However,
these mixing angles cannot be determined by the standard
model (SM) itself but can only be fixed by the experimen-
tal data. So the mixing angles are taken as free parameters
and are not correlated. Furthermore, the quark and lep-
ton mixing matrices, which are composed of the mixing
angles, are also independent of each other. If we can find
the relation between these mixing angles or the relation
between the mixing matrices, it will be helpful for our un-
derstanding of the inner essence of the SM and for model
construction of the grand unified theory.

In this paper, we discuss the relations between the mix-
ing angles and the mixing matrices of quarks and leptons,
respectively. First, for the mixing angles, Raidal has sug-
gested some numerical relations [3]:

θCKM
1 + θPMNS

1 (θatm) =
π
4
,

θCKM
2 ∼ θPMNS

2 (θchz) ∼ O(λ3),

θCKM
3 (θC) + θPMNS

3 (θsol) =
π
4
, (1)
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where the θi are the mixing angles of the CKM and the
PMNS matrices. With these relations, we can link the ele-
ments of the CKM and the PMNS matrices together, and
then can express the CKM and the PMNS matrices in
a unified way [4]. Furthermore, we can find the relation
between these two mixing matrices.

Second, for the mixing matrices, we discuss the
products of the CKM and the PMNS matrices. Both
VCKMUPMNS and UPMNSVCKM are calculated in detail. We
find that the product of the CKM and the PMNS matri-
ces is rather near the bimaximal mixing pattern. So we
can get the PMNS matrix in terms of the CKM matrix
and the bimaximal mixing matrix. The PMNS matrix can
be parameterized by the parameters of the CKM matrix,
and the relations between the mixing angles are deduced
naturally.

In Sects. 2 and 3, we discuss the quark and lepton mix-
ing matrices, and the mixing angles and the parameteriza-
tions of quark and lepton mixing matrices, and show their
relations. In Sect. 4, with the numerical relations between
the quark and lepton mixing angles, we discuss the rela-
tion between the quark and lepton mixing matrices and
point out the similarities and the differences of different
versions. In Sect. 5, we discuss the relations between the
mixing angles under the conjecture that the product of
quark and lepton mixing matrices is the bimaximal mix-
ing pattern. Some conclusions are given in Sect. 6.
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2 The quark and lepton mixing matrices

To see the generation of the quark mixing matrix, let us
consider the charge-changing weak current:

j = 2
∑

α′=u′,c′,t′
uα′γρdα′ , (2)

where the u-type and d-type quark fields uα′ and dα′ do
not have definite masses but are linear combinations of
the massive quark fields uα and dα,

uα′ =
∑

α=u,c,t

V α′α
u uα, dα′ =

∑
α=d,s,b

V α′β
d dβ , (3)

where Vu and Vd are unitary matrices which can diagonal-
ize the quark mass matrices. Substituting (3) into (2), we
have

j = 2
∑

α′,α,β

uαγρV
αα′†
u V α′β

d dβ

= 2
∑
α,β

uαγρV
αβ
CKMdβ ,

where
VCKM = V †

u Vd. (4)

VCKM is the quark mixing (CKM) matrix, which links the
flavor eigenstates to the mass eigenstates of quarks.

The CKM matrix is measured by different experiments
to a good degree of accuracy [5], and the elements of the
modulus of the CKM matrix are summarized as




0.9739 − 0.9751 0.221 − 0.227 0.0029 − 0.0045
0.221 − 0.227 0.9730 − 0.9744 0.039 − 0.044
0.0048 − 0.014 0.037 − 0.043 0.9990 − 0.9992


 .

We can see that the CKM matrix is very near the unit
matrix, and it can be parameterized by the Wolfenstein
parameterization [6]:

VCKM =


 1 − 1

2λ2 λ Aλ3(ρ − iη)
−λ 1 − 1

2λ2 Aλ2

Aλ3(1 − ρ − iη) −Aλ2 1


 , (5)

where λ measures the strength of the deviation of VCKM
from the unit matrix (λ = sin θC = 0.2243 ± 0.0016, θC
is the Cabibbo mixing angle), and A, ρ and η are the
other three parameters, with the best fit values A = 0.82,
ρ = 0.20 and η = 0.33 [5].

Similarly, the lepton mixing (PMNS) matrix can be
written as

UPMNS = U†
l Uν , (6)

where Ul and Uν are unitary matrices, which can diago-
nalize the charged-lepton and the neutrino mass matrices,
and UPMNS links the flavor eigenstates to the mass eigen-
states of leptons.

The elements of the modulus of the PMNS matrix are
summarized as [7]

0.77–0.88 0.47–0.61 < 0.20
0.19–0.52 0.42–0.73 0.58–0.82
0.20–0.53 0.44–0.74 0.56–0.81


 . (7)

We can see that the PMNS matrix deviates from the unit
matrix very much but is quite near the bimaximal mixing
pattern, which reads

Ubimax =




√
2/2

√
2/2 0

−1/2 1/2
√

2/2
1/2 −1/2

√
2/2


 . (8)

Since the CKM matrix is quite near the unit matrix,
and the PMNS matrix is quite near the bimaximal matrix,
we may assume that the deviation of the PMNS matrix
from bimaximal can just be described by the CKM matrix,
that is

UPMNSVCKM = Ubimax, (9)

or

VCKMUPMNS = Ubimax. (10)

So we can get

UPMNS = UbimaxV
†
CKM, (11)

or

UPMNS = V †
CKMUbimax. (12)

Equations (9) and (10) have both been pointed out by
Minakata and Smirnov [8], and the similar results have
also been discussed in the literature [9]. Thus, the PMNS
matrix can be expressed thoroughly by the CKM matrix
and can be parameterized by the Wolfenstein parameters
of the CKM matrix. So we can get the relations between
the mixing angles of quarks and leptons. We will discuss
these two cases in Sect. 5.

3 The mixing angles of the quark
and lepton mixing matrices

Both the CKM matrix and the PMNS matrix can be writ-
ten as
 c2c3 c2s3 s2e−iδ

−c1s3 − s1s2c3eiδ c1c3 − s1s2s3eiδ s1c2

s1s3 − c1s2c3eiδ −s1c3 − c1s2s3eiδ c1c2


 , (13)

where si = sin θi, ci = cos θi (for i = 1, 2, 3), which de-
scribe the mixings between 2nd and 3rd, 3rd and 1st, and
1st and 2nd generations of quarks or leptons, and δ is
the Dirac CP -violating phase. Altogether there are eight
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(four for quark sector and four for lepton sector) parame-
ters in the mixing matrices, describing both the real and
the imaginary parts of the mixing matrices. If neutrinos
are of Majorana type, it is always feasible to parameterize
the neutrino mixing matrix as a product of (13) and a di-
agonal phase matrix with two unremovable phase angles
diag(1, eiα, eiβ) [10], where α, β are the Majorana CP -
violating phases.

For the quark sector, these angles have been measured
to a good degree of accuracy (for example, see [5]). The
best fit values of the three mixing angles are θCKM

1 = 2.4◦,
θCKM
2 = 0.2◦, and θCKM

3 (θC) = 12.9◦.
For the lepton sector, with the help of various experi-

mental data from the KamLAND [11], SNO [12], K2K [13],
Super-Kamiokande [14] and CHOOZ [15] experiments, we
now have a much better understanding of these mixing
angles,

sin2 2θatm = 1.00 ± 0.05,

sin2 2θchz = 0 ± 0.065,

tan2 θsol = 0.41 ± 0.05,

where θatm, θchz, and θsol are the mixing angles of at-
mospheric, CHOOZ and solar neutrino oscillations, and
we have θatm = θPMNS

1 = 45.0◦ ± 6.5◦, θchz = θPMNS
2 =

0◦ ± 7.4◦ and θsol = θPMNS
3 = 32.6◦ ± 1.6◦ [3].

An interesting numerical relation between the third
mixing angles of quarks and leptons was pointed out by
Smirnov [16]:

θCKM
3 (θC) + θPMNS

3 (θsol) =
π
4
. (14)

This relation is called the quark–lepton complementarity
(QLC) [8].

Raidal extended this relation to three generations [3]:

θCKM
1 + θPMNS

1 (θatm) =
π
4
,

θCKM
2 ∼ θPMNS

2 (θchz) ∼ O(λ3),

θCKM
3 (θC) + θPMNS

3 (θsol) =
π
4
.

With these relations, we can find that the mixing an-
gles of quarks and leptons are not independent of each
other. And thus we can get the trigonometric functions of
the mixing angles of leptons in terms of those of quarks,
and link the parameters of the PMNS matrix with those
of the CKM matrix. Therefore, we can parameterize the
PMNS matrix and the CKM matrix in a same framework
[4]. Then we can test the product relations in (9) and (10).
We will discuss these cases in Sect. 4.

4 The relations between the mixing angles

In Wolfenstein parameterization of the CKM matrix, we
have (to the order of λ3)

sin θCKM
1 = Aλ2, cos θCKM

1 = 1,

sin θCKM
2 e−iδ = Aλ3(ρ − iη), cos θCKM

2 = 1,

sin θCKM
3 = λ, cos θCKM

3 = 1 − 1
2
λ2. (15)

Using (1), we can get the trigonometric functions of
the mixing angles of leptons (to the order of λ3)

sin θPMNS
1 = sin

(π
4

− θCKM
1

)
=

√
2

2
(1 − Aλ2),

cos θPMNS
1 =

√
2

2
(1 + Aλ2),

sin θPMNS
2 e−iδ = Aλ3(ζ − iξ),

cos θPMNS
2 = 1,

sin θPMNS
3 =

√
2

2

(
1 − λ − 1

2
λ2
)

,

cos θPMNS
3 =

√
2

2

(
1 + λ − 1

2
λ2
)

, (16)

where A and λ are the Wolfenstein parameters of the CKM
matrix. So the CKM and the PMNS matrices have only
one set of parameters with Raidal’s numerical relations.
Because there are in total four angles in the mixing matrix
(three mixing angles and one CP -violating phase angle),
and only two precise numerical relations are known, we
have to introduce another two new parameters ζ and ξ to
describe the PMNS matrix fully.

In (16), we set sin θPMNS
2 e−iδ = Aλ3(ζ − iξ). Because

of the inaccurate experimental data of neutrino oscilla-
tions, we have not fixed the value of |UPMNS

e3 |, and only
its upper bound is known [7]. Therefore, we may also set
sin θPMNS

2 e−iδ = Aλ2(ζ − iξ). The choice between them is
to be determined by the future experimental data, and we
discuss these two cases here, respectively.
Case 1. sin θPMNS

2 e−iδ = Aλ3(ζ − iξ).
Substituting (16) into (13), we can get the PMNS ma-

trix:

UPMNS

=




√
2

2

(
1 + λ − 1

2λ2
)

− 1
2

[
1 − λ +

(
A − 1

2

)
λ2 − Aλ3(1 − ζ − iξ)

]
1
2

[
1 − λ − (A + 1

2

)
λ2 + Aλ3(1 − ζ − iξ)

]
√

2
2

(
1 − λ − 1

2λ2
)

1
2

[
1 + λ +

(
A − 1

2

)
λ2 + Aλ3(1 − ζ − iξ)

]
− 1

2

[
1 + λ − (A + 1

2

)
λ2 − Aλ3(1 − ζ − iξ)

]
Aλ3(ζ − iξ)√
2

2 (1 − Aλ2)√
2

2 (1 + Aλ2)




=




√
2

2

√
2

2 0
− 1

2
1
2

√
2

2
1
2 − 1

2

√
2

2


+ λ




√
2

2 −
√

2
2 0

1
2

1
2 0

− 1
2 − 1

2 0




+ λ2


 −

√
2

4 −
√

2
4 0

− 1
2

(
A − 1

2

) 1
2

(
A − 1

2

) −
√

2
2 A

− 1
2

(
A + 1

2

) 1
2

(
A + 1

2

) √
2

2 A



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+ λ3


 0 0

1
2A(1 − ζ − iξ) 1

2A(1 − ζ − iξ)
1
2A(1 − ζ − iξ) 1

2A(1 − ζ − iξ)

A(ζ − iξ)
0
0




+ · · · (17)

We can see from (17) the followings.
(1) The bimaximal mixing pattern is deduced naturally as
the leading-order approximation as long as we accept the
numerical relations in (1).
(2) The leading and next-to-leading order terms are just
the same as the expressions in the expansion of the PMNS
matrix around the bimaximal mixing pattern by Rodejo-
hann [17] and us [18].
(3) The Wolfenstein parameter λ can characterize both
the deviation of the CKM matrix from the unit matrix
(see (5)) and the deviation of the PMNS matrix from the
exactly bimaximal mixing pattern (see the next-to-leading
order term in (17)).

Since these two different kinds of deviations are char-
acterized by only one parameter set, the product of the
CKM matrix and the PMNS matrix may just be the ex-
actly bimaximal mixing matrix ((9) and (10)). To see this
clearly, we discuss these two versions of the product, re-
spectively.
(i) VCKMUPMNS.

From (17) and (5), we have

VCKMUPMNS

=




√
2

2

√
2

2 0
− 1

2
1
2

√
2

2
1
2 − 1

2

√
2

2


+ λ




√
2−1
2 −

√
2−1
2

√
2

2

−
√

2−1
2 −

√
2−1
2 0

− 1
2 − 1

2 0




+ λ2


−

√
2−1
2 −

√
2−1
2 0

−
√

2−1
2

√
2−1
2 −

√
2

4
− 1

4
1
4 0




+ λ3


 −

√
2−1
4 − 1

2A(1 − ρ + iη)√
2−1
4 − 1

2A(ζ + iξ)
1
2A[

√
2(1 − ρ + iη) − (ζ + iξ)]

√
2−1
4 + 1

2A(1 − ρ + iη)√
2−1
4 − 1

2A(ζ + iξ)
1
2A[

√
2(1 − ρ + iη) − (ζ + iξ)]

A
[
(ζ − iξ) −

√
2

2 (1 − ρ + iη)
]

0
0




+ · · · (18)

We can see from (18) that the deviation of the prod-
uct of the CKM matrix and the PMNS matrix from the
exactly bimaximal mixing matrix is of order λ.
(ii) UPMNSVCKM.

Similarly, we have

UPMNSVCKM

=




√
2

2

√
2

2 0
− 1

2
1
2

√
2

2
1
2 − 1

2

√
2

2




+ λ2


 0 0

√
2

2 A

− 1
2A − 1

2 (
√

2 − 1)A − 1
2 (

√
2 − 1)A

− 1
2A − 1

2 (
√

2 − 1)A 1
2 (

√
2 − 1)A




+ λ3


 0

1
2A[

√
2(1 − ρ − iη) − (ζ + iξ)]

1
2A[

√
2(1 − ρ − iη) − (ζ + iξ)]

0
− 1

2A(ζ + iξ)
− 1

2A(ζ + iξ)

A
[
(ζ − iξ) −

√
2

2 (1 − ρ + iη)
]

1
2A(1 − ρ + iη)

− 1
2A(1 − ρ + iη)




+ · · · (19)

We can see from (19) that the deviation of the product
of the PMNS matrix and the CKM matrix from the ex-
actly bimaximal mixing matrix is smaller (to the order of
λ2) than the former one. So the conjecture in (9) is better
than the conjecture in (10).
Case 2. sin θPMNS

2 e−iδ = Aλ2(ζ − iξ).
Repeating this process, we get

UPMNS

=




√
2

2

(
1 + λ − 1

2λ2
)

− 1
2

{
1 − λ − [ 1

2 − A(1 + ζ + iξ)
]
λ2
}

1
2

{
1 − λ − [ 1

2 + A(1 + ζ + iξ)
]
λ2
}

√
2

2

(
1 − λ − 1

2λ2
)

1
2

{
1 + λ − [ 1

2 − A(1 − ζ − iξ)
]
λ2
}

− 1
2

{
1 + λ − [ 1

2 + A(1 − ζ − iξ)
]
λ2
}

Aλ2(ζ − iξ)√
2

2 (1 − Aλ2)√
2

2 (1 + Aλ2)




=




√
2

2

√
2

2 0
− 1

2
1
2

√
2

2
1
2 − 1

2

√
2

2


+ λ




√
2

2 −
√

2
2 0

1
2

1
2 0

− 1
2 − 1

2 0




+ λ2


 −

√
2

4
1
2

[ 1
2 − A(1 + ζ + iξ)

]
− 1

2

[ 1
2 + A(1 + ζ + iξ)

]
−

√
2

4 A(ζ − iξ)
− 1

2

[ 1
2 − A(1 − ζ − iξ)

] −
√

2
2 A

1
2

[ 1
2 + A(1 − ζ − iξ)

] √
2

2 A




+ · · · (20)
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Similarly, we have for
(i) VCKMUPMNS

VCKMUPMNS

=




√
2

2

√
2

2 0
− 1

2
1
2

√
2

2
1
2 − 1

2

√
2

2


+ λ




√
2−1
2 −

√
2−1
2

√
2

2

−
√

2−1
2 −

√
2−1
2 0

− 1
2 − 1

2 0




+ λ2


 −

√
2−1
2

− 1
2 [

√
2 − 1 + A(ζ + iξ)]

− 1
2

[ 1
2 + A(ζ + iξ)

]
−

√
2−1
2 A(ζ − iξ) A(ζ − iξ)

1
2 [

√
2 − 1 − A(ζ + iξ)] −

√
2

4
1
2

[ 1
2 − A(ζ + iξ)

]
0




+ · · · (21)

and for
(ii) UPMNSVCKM

UPMNSVCKM

=




√
2

2

√
2

2 0
− 1

2
1
2

√
2

2
1
2 − 1

2

√
2

2




+ λ2


 0 0

− 1
2A(1 + ζ + iξ) − 1

2A(
√

2 − 1 + ζ + iξ)
− 1

2A(1 + ζ + iξ) − 1
2A(

√
2 − 1 + ζ + iξ)

A
(√

2
2 + ζ − iξ

)
− 1

2 (
√

2 − 1)A
1
2 (

√
2 − 1)A




+ · · · (22)

Again, we find that the deviation of UPMNSVCKM from
the exactly bimaximal mixing matrix is rather small (to
the order of λ2), and that the deviation of VCKMUPMNS
from the exactly bimaximal mixing matrix is larger (to the
order of λ). So the former conjecture in (9) is still better
than the conjecture in (10).

In summary, in both the cases of sin θPMNS
2 e−iδ =

Aλ3(ζ − iξ) and sin θPMNS
2 e−iδ = Aλ2(ζ − iξ), the product

of UPMNSVCKM is nearer to the exactly bimaximal mixing
matrix than the product of VCKMUPMNS.

5 The relations between the mixing matrices

In the previous deductive process, we admit Raidal’s nu-
merical relations between the mixing angles of quarks
and leptons beforehand and thus get the PMNS matrix
in terms of the Wolfenstein parameters of the CKM ma-
trix. Then we calculate the product of VCKMUPMNS and
UPMNSVCKM, and we compare their deviations from the
exactly bimaximal mixing matrix. However, with the cur-
rent experimental data, we can also make the conjec-
tures UPMNSVCKM = Ubimax or VCKMUPMNS = Ubimax

at first, and then get the PMNS matrix straightforwardly.
Thereafter we can find whether Raidal’s relations hold
good under these conjectures. We discuss the two differ-
ent products, respectively. We have seen from Sect. 4 that
UPMNSVCKM is closer to the bimaximal mixing pattern (to
the order of λ2) than VCKMUPMNS (to the order of λ), so
this time we discuss the case UPMNSVCKM = Ubimax first.
Case 1. UPMNSVCKM = Ubimax.

We suggest this product as a possibility for the relation
between the quark and lepton mixing matrices. Although
we have no theoretical fundamental reason for this sugges-
tion, we can see that this product is consistent with (19)
and (22) in Sect. 4. In the following deductive process, we
can see that if we assume UPMNSVCKM = Ubimax, the QLC
can be obtained directly and Raidal’s relations can hold
good, and the parameterization of the PMNS matrix can
be deduced naturally.

Because VCKM is unitary, we can get UPMNS by multi-
plying V †

CKM on the right of Ubimax,

UPMNS = UbimaxV
†
CKM

=




√
2

2

√
2

2 0
− 1

2
1
2

√
2

2
1
2 − 1

2

√
2

2


+ λ




√
2

2 −
√

2
2 0

1
2

1
2 0

− 1
2 − 1

2 0




+ λ2


−

√
2

4 −
√

2
4 −

√
2

2 A
1
4

√
2

2 A − 1
4 − 1

2A

− 1
4

√
2

2 A + 1
4

1
2A




+ λ3


 0 0

√
2

2 A(1 − ρ + iη)√
2

2 A(ρ + iη) 0 − 1
2A(1 − ρ + iη)√

2
2 A(ρ + iη) 0 1

2A(1 − ρ + iη)




+ · · · (23)

We can see that the leading and the next-to-leading
terms in (23) are just the same as those in (17) and
(20). This indicates that Raidal’s relations (see (1)) and
UPMNSVCKM = Ubimax are in very good consistency with
each other.

To see this more clearly, we can calculate the trigono-
metric functions of the mixing angles of the PMNS matrix,
and then calculate the sums of the corresponding angles
of quarks and leptons.

From (23), we have

cPMNS
2 sPMNS

3 =
√

2
2

−
√

2
2

λ −
√

2
4

λ2,

cPMNS
2 cPMNS

3 =
√

2
2

+
√

2
2

λ −
√

2
4

λ2. (24)

From (24) we have (to the order of λ3)

tan θPMNS
3 = 1 − 2λ + 2λ2 − 3λ3. (25)

Thus, we can get (to the order of λ3)

sPMNS
3 =

√
2

2
−

√
2

2
λ −

√
2

4
λ2,



22 Nan Li, Bo-Qiang Ma: Relations between quark and lepton mixing angles and matrices

cPMNS
3 =

√
2

2
+

√
2

2
λ −

√
2

4
λ2. (26)

Similarly, we have

sPMNS
1 =

√
2

2
− Aλ2 + Aλ3,

cPMNS
1 =

√
2

2
+ Aλ2 − Aλ3. (27)

Also, we have

sPMNS
2 e−iδ = −

√
2

2
Aλ2 +

√
2

2
(1 − ρ + iη)Aλ3, (28)

and so

|sPMNS
2 | =

√
2

2
Aλ2

√
(λ − λρ − 1)2 + (λη)2. (29)

Substituting the best fit values of A, λ, ρ and η, we have

|sPMNS
2 | = 0.48λ2, (30)

and cPMNS
2 = 1 (to the order of λ3).

Now we have got all the six trigonometric functions
of the mixing angles of leptons, and we can calculate the
sums of the mixing angles of quarks and leptons.

Using (15) and (26), we have

sin(θCKM
3 + θPMNS

3 ) = sCKM
3 cPMNS

3 + cCKM
3 sPMNS

3

=
√

2
2

,

and thus

θCKM
3 + θPMNS

3 =
π
4
. (31)

We can find that the QLC is satisfied precisely.
Similarly,

sin(θCKM
1 + θPMNS

1 ) =
√

2
2

+

(√
2

2
− 1

)
Aλ2 + Aλ3,

and thus

θCKM
1 + θPMNS

1 =
π
4

− (
√

2 − 1)Aλ2 +
√

2Aλ3. (32)

So Raidal’s relation is violated a little (to the order of λ2).
Also, for sPMNS

2 , we can find from (30) that sPMNS
2 ∼

λ2; this differs from Raidal’s relation slightly and is con-
sistent with the parameterization in (20).

In summary, if we assume that UPMNSVCKM = Ubimax,
we can get the PMNS matrix with the bimaxiaml matrix
and the CKM matrix, all the elements of the PMNS ma-
trix can be expressed by the parameters of the CKM ma-
trix. The QLC is satisfied perfectly, and Raidal’s relations
can be deduced naturally (the deviation from Raidal’s re-
lations is of the order of λ2).
Case 2. VCKMUPMNS = Ubimax.

This relation has been pointed out by Giunti and Tan-
imoto [19] and discussed by some other authors [20,21].
Giunti and Tanimoto [19] suggested that the deviation of
UPMNS from the bimaximal mixing matrix is the CKM-
like matrix, and Kang, Kim, and Lee [21] got this relation
under the assumptions Yu = Y T

d , Yu = Y T
u in SU(5) and

Yν = Yu in SO(10) grand unified theories.
Repeating the previous process, we can get the PMNS

matrix as

UPMNS = V †
CKMUbimax

=




√
2

2

√
2

2 0
− 1

2
1
2

√
2

2
1
2 − 1

2

√
2

2


+ λ




1
2 − 1

2 −
√

2
2√

2
2

√
2

2 0
0 0 0




+ λ2


 −

√
2

4 −
√

2
4 0

1
4 − 1

2A − 1
4 + 1

2A −
√

2
4 −

√
2

2 A

− 1
2A 1

2A
√

2
2 A




+ λ3




1
2A(1 − ρ + iη) − 1

2A(1 − ρ + iη)
0 0√

2
2 A(ρ + iη)

√
2

2 A(ρ + iη)
√

2
2 A(1 − ρ + iη)

0
0




+ · · · (33)

We can see that the leading term in (33) is the bimax-
imal mixing pattern like that in (17) and (20). However,
from the next-to-leading term, there are differences be-
tween (33) and (17) and (20). This indicates that the de-
gree of the breaking of Raidal’s relations (see (1)) is larger
than that of Case 1.

Similarly, we can get all the six trigonometric functions
of the mixing angles of leptons.

From (33), we have (to the order of λ3)

sPMNS
1 =

√
2

2
−

√
2

2

(
A +

1
4

)
λ2,

cPMNS
1 =

√
2

2
+

√
2

2

(
A +

1
4

)
λ2,

|sPMNS
2 | =

√
2

2
λ
√

[Aλ2(1 − ρ) − 1]2 + (Aλ2η)2

= 0.68λ,

cPMNS
2 = 1 − 0.23λ2,

sPMNS
3 =

√
2

2
− λ −

√
2

2
λ2 +

(
A +

1
2

)
λ3,

cPMNS
3 =

√
2

2
+ λ −

√
2

2
λ2 −

(
A +

1
2

)
λ3. (34)

Also we can get the sums of mixing angles of quarks
and leptons:

sin(θCKM
1 + θPMNS

1 ) =
√

2
2

−
√

2
8

λ2,
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and thus

θCKM
1 + θPMNS

1 =
π
4

− 1
4
λ2. (35)

And we have

sin(θCKM
3 + θPMNS

3 )

=
√

2
2

+ (
√

2
2

− 1)λ

+

(
1 − 3

√
2

4

)
λ2 +

(
A + 1 −

√
2

2

)
λ3,

and thus

θCKM
1 + θPMNS

1

=
π
4

− (
√

2 − 1)λ

+
(√

2 − 3
2

)
λ2 + (

√
2A +

√
2 − 1)λ3. (36)

We can see from (35) and (36) that both of the Raidal
relations break down, and the QLC is broken to the order
of λ. This breaking has been pointed out by Minakata and
Smirnov [8] and Kang, Kim, and Lee [21]. Comparing with
(31) and (32), we can see that the difference is caused by
the order of the product. If we set VCKMUPMNS = Ubimax,
the deviations from Raidal’s relations are larger than the
results if we set UPMNSVCKM = Ubimax.

Also, from (34), we know |sPMNS
2 | = 0.68λ, so we can

get |UPMNS
e3 | = 0.68λ. Substituting the best fit value λ =

0.2243 [5] into it, we have

|UPMNS
e3 | = 0.15.

This value is quite near the upper bound of |UPMNS
e3 | <

0.20. However, from (30), we know |sPMNS
2 | = 0.48λ2, so

we can get

|UPMNS
e3 | = 0.48λ2 = 0.024.

We can see that this result is more consistent with the
current experimental upper bound.

From the discussions above, we can see the non-
equivalence of (9) or (10) and Raidal’s numerical relations
of the mixing angles, which means that we cannot get
Raidal’s numerical relations of the mixing angles exactly
from (9) or (10), and vice versa. There are small devi-
ations from the exact Raidal numerical relations of the
mixing angles if we take (9) or (10) as precise results. (For
example, see (32) and (36).)

Furthermore, we find that the product UPMNSVCKM =
Ubimax is better than VCKMUPMNS = Ubimax from the
viewpoints of both symmetry and phenomenological con-
siderations. Of course, if the deviation of the PMNS ma-
trix from the bimaximal mixing matrix is not exactly the
CKM matrix but is just the CKM-like matrix [19–21] (i.e.,
the elements of the matrix have the same hierarchy as the
Wolfenstein parameterization, but with not exactly the
same Wolfenstein parameters), (10) may still be satisfied.

The two different cases can be further discriminated by
future experiments.

If the relation UPMNSVCKM = Ubimax is supported by
the future experimental data, using (4) and (6) we have

UPMNSVCKM = U†
l UνV †

u Vd = Ubimax.

However, we know that Ul, Uν , Vu and Vd are not def-
inite, and we can set Ul and Vd to be the unit matrix by
redefining the quark and lepton fields, and thus we have

UPMNS = Uν , VCKM = V †
u ,

and thus

UPMNSVCKM = UνV †
u = Ubimax.

So we can find that the relation between the CKM
and the PMNS matrices can be transformed to the rela-
tion between Vu and Uν , and we may regard this as the
complementarity of quark and lepton mixing matrices.

6 Conclusions

In this paper, we explore the relations between the mix-
ing angles and mixing matrices of quarks and leptons. For
the mixing angles, with Raidal’s relations, we can link
the mixing angles of quarks and leptons in a same frame-
work and then express their mixing matrices in a unified
way, i.e., we can parameterize the PMNS matrix with the
Wolfenstein parameters of the CKM matrix [4]. With this
unified parameterization, we discuss the relations between
the quark and lepton mixing matrices. Both VCKMUPMNS
and UPMNSVCKM are calculated in detail, and we can find
that UPMNSVCKM is closer to the bimaximal mixing ma-
trix than VCKMUPMNS.

Similarly, for the relation between the quark and lep-
ton mixing matrices, if we have VCKMUPMNS = Ubimax,
we can find that Raidal’s relations will violate; espe-
cially the elegant quark–lepton complementarity (QLC)
will break down (the degree of breaking is of order λ).
On the contrary, if we set UPMNSVCKM = Ubimax, we can
see that Raidal’s relations will hold good to the order of
λ2, and the QLC will be a precise relation exactly. Al-
though UPMNSVCKM = Ubimax is still a phenomenologi-
cal suggestion, it is consistent with the experimental data
and is supported by the analysis in Sect. 4. Future ex-
perimental discrimination between the two different cases
of VCKMUPMNS = Ubimax or UPMNSVCKM = Ubimax will
shed light on our understanding of the relation between
the quark and lepton mixing matrices, and will be also
helpful for the future model construction of the quark and
lepton mixing matrices in a grand unified theory.
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